Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203722

RESUMO

The cold-adapted Psychrobacter sp. strain DAB_AL62B, isolated from ornithogenic deposits on the Arctic island of Spitsbergen, harbors a 34.5 kb plasmid, pP62BP1, which carries a genetic SLF module predicted to enable the host bacterium to metabolize alkyl sulfates including sodium dodecyl sulfate (SDS), a common anionic surfactant. In this work, we experimentally confirmed that the pP62BP1-harboring strain is capable of SDS degradation. The slfCHSL genes were shown to form an operon whose main promoter, PslfC, is negatively regulated by the product of the slfR gene in the absence of potential substrates. We showed that lauryl aldehyde acts as an inducer of the operon. The analysis of the draft genome sequence of the DAB_AL62B strain revealed that the crucial enzyme of the SDS degradation pathway-an alkyl sulfatase-is encoded only within the plasmid. The SLF module is flanked by two restriction-modification systems, which were shown to exhibit the same sequence specificity. We hypothesize that the maintenance of pP62BP1 may be dependent on this unique genetic organization.


Assuntos
Enzimas de Restrição-Modificação do DNA , Psychrobacter , Psychrobacter/genética , Família Multigênica , Redes Reguladoras de Genes , Plasmídeos/genética
2.
Front Plant Sci ; 12: 671981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34226827

RESUMO

Snow algae are an important group of terrestrial photosynthetic organisms in Antarctica, where they mostly grow in low lying coastal snow fields. Reliable observations of Antarctic snow algae are difficult owing to the transient nature of their blooms and the logistics involved to travel and work there. Previous studies have used Sentinel 2 satellite imagery to detect and monitor snow algal blooms remotely, but were limited by the coarse spatial resolution and difficulties detecting red blooms. Here, for the first time, we use high-resolution WorldView multispectral satellite imagery to study Antarctic snow algal blooms in detail, tracking the growth of red and green blooms throughout the summer. Our remote sensing approach was developed alongside two Antarctic field seasons, where field spectroscopy was used to build a detection model capable of estimating cell density. Global Positioning System (GPS) tagging of blooms and in situ life cycle analysis was used to validate and verify our model output. WorldView imagery was then used successfully to identify red and green snow algae on Anchorage Island (Ryder Bay, 67°S), estimating peak coverage to be 9.48 × 104 and 6.26 × 104 m2, respectively. Combined, this was greater than terrestrial vegetation area coverage for the island, measured using a normalized difference vegetation index. Green snow algae had greater cell density and average layer thickness than red blooms (6.0 × 104 vs. 4.3 × 104 cells ml-1) and so for Anchorage Island we estimated that green algae dry biomass was over three times that of red algae (567 vs. 180 kg, respectively). Because the high spatial resolution of the WorldView imagery and its ability to detect red blooms, calculated snow algal area was 17.5 times greater than estimated with Sentinel 2 imagery. This highlights a scaling problem of using coarse resolution imagery and suggests snow algal contribution to net primary productivity on Antarctica may be far greater than previously recognized.

3.
Nat Commun ; 11(1): 2527, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433543

RESUMO

We present the first estimate of green snow algae community biomass and distribution along the Antarctic Peninsula. Sentinel 2 imagery supported by two field campaigns revealed 1679 snow algae blooms, seasonally covering 1.95 × 106 m2 and equating to 1.3 × 103 tonnes total dry biomass. Ecosystem range is limited to areas with average positive summer temperatures, and distribution strongly influenced by marine nutrient inputs, with 60% of blooms less than 5 km from a penguin colony. A warming Antarctica may lose a majority of the 62% of blooms occupying small, low-lying islands with no high ground for range expansion. However, bloom area and elevation were observed to increase at lower latitudes, suggesting that parallel expansion of bloom area on larger landmasses, close to bird or seal colonies, is likely. This increase is predicted to outweigh biomass lost from small islands, resulting in a net increase in snow algae extent and biomass as the Peninsula warms.


Assuntos
Carbono/metabolismo , Clorófitas/metabolismo , Distribuição Animal , Animais , Regiões Antárticas , Biomassa , Aves/crescimento & desenvolvimento , Carbono/análise , Sequestro de Carbono , Clorófitas/classificação , Clorófitas/crescimento & desenvolvimento , Ecossistema , Eutrofização , Ilhas , Tecnologia de Sensoriamento Remoto , Focas Verdadeiras/crescimento & desenvolvimento , Estações do Ano , Spheniscidae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...